Carnegie Mellon University in Qatar - Differential and Integral Calculus (21-120)
Undergraduate course, Carnegie Mellon University in Qatar, Arts and Sciences, Mathematics, 2020
Course for Biology and Information Systems students
Syllabus
- Four Ways to Represent a Function
- Mathematical Models: A Catalog of Essential Functions
- New Functions from Old Functions
- Exponential Function
- Inverse Functions and Logarithms
- The Tangent and Velocity Problems
- The Limit of a Function
- Calculating Limits Using the Limit Laws
- The Precise Definition of a Limit
- Continuity
- Limits at Infinity; Horizontal Asymptotes
- Derivatives and Rates of Change
- The Derivative as a Function
- Derivatives of Polynomials and Exponential Functions
- The Product and Quotient Rules
- Derivatives of Trigonometric Functions
- The Chain Rule
- Implicit Differentiation
- Derivatives of Logarithmic Functions
- Rates of Change in the Natural and Social Sciences
- Exponential Growth and Decay
- Related Rates
- Linear Approximations and Differentials
- Maximum and Minimum Values
- The Mean Value Theorem
- How Derivatives Affect the Shape of a Graph
- Indeterminate Forms and l’Hospitals Rule
- Summary of Curve Sketching
- Graphing with Calculus and Calculators
- Optimization Problems
- Newtons Method
- Antiderivatives
- Areas and Distances
- The Definite Integral
- Fundamental Theorem of Calculus
- Indefinite Integrals and the Net Change Theorem
- The Substitution Rule
- Areas Between Curves
- Volumes
- Volumes by Cylindrical Shells
- Work
- Average Value of a Function
- Integration by Parts